CISCO-LWAPP-REAP-MIB

This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weight Access Point Protocol tunnel from Light-weight LWAPP Access Points. Information represented by this MIB is passed by the controller to those Cisco LWAPP APs, that can operate in stand-alone mode. The relationship between CC and the LWAPP APs can be depicted as follows: +......+ +......+ +......+ +......+ + + + + + + + + + CC + + CC + + CC + + CC + + + + + + + + + +......+ +......+ +......+ +......+ .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . +......+ +......+ +......+ +......+ +......+ + + + + + + + + + + + AP + + AP + + AP + + AP + + AP + + + + + + + + + + + +......+ +......+ +......+ +......+ +......+ . . . . . . . . . . . . . . . . . . . . . . . . +......+ +......+ +......+ +......+ +......+ + + + + + + + + + + + MN + + MN + + MN + + MN + + MN + + + + + + + + + + + +......+ +......+ +......+ +......+ +......+ The LWAPP tunnel exists between the controller and the APs. The MNs communicate with the APs through the protocol defined by the 802.11 standard. LWAPP APs, upon bootup, discover and join one of the controllers and the controller pushes the configuration, that includes the WLAN parameters, to the LWAPP APs. The APs then encapsulate all the 802.11 frames from wireless clients inside LWAPP frames and forward the LWAPP frames to the controller. GLOSSARY Access Point ( AP ) An entity that contains an 802.11 medium access control ( MAC ) and physical layer ( PHY ) interface and provides access to the distribution services via the wireless medium for associated clients. LWAPP APs encapsulate all the 802.11 frames in LWAPP frames and sends them to the controller to which it is logically connected. Central Controller ( CC ) The central entity that terminates the LWAPP protocol tunnel from the LWAPP APs. Throughout this MIB, this entity is also referred to as 'controller'. Light Weight Access Point Protocol ( LWAPP ) This is a generic protocol that defines the communication between the Access Points and the Central Controller. Mobile Node ( MN ) A roaming 802.11 wireless device in a wireless network associated with an access point. Native VLAN ID A switch port and/or AP can be configured with a 'native VLAN ID'. Untagged or priority-tagged frames are implicitly associated with the native VLAN ID. The default native VLAN ID is '1' if VLAN tagging is enabled. The native VLAN ID is '0' or 'no VLAN ID' if VLAN tagging is not enabled. Remote Edge Access Point ( REAP ) The LWAPP AP that can also act as a stand-alone AP when it loses communication with the controller it was associated with. When REAP can reach the controller (connected state), it gets help from controller to complete client authentication. When a controller is not reachable by REAP, it goes into standalone state and does client authentication by itself. All data packets from clients are either bridged locally (local-switch) or forwarded to the controller (central-switch) depending on the WLAN configuration. Virtual LAN VLAN defined in the IEEE 802.1Q VLAN standard supports logically segmenting of LAN infrastructure into different subnets or workgroups so that packets are switched only between ports within the same VLAN. VLAN ID Each VLAN is identified by a 12-bit 'VLAN ID'. A VLAN ID of '0' is used to indicate 'no VLAN ID'. Valid VLAN IDs range from '1' to '4095'. REFERENCE [1] Part 11 Wireless LAN Medium Access Control ( MAC ) and Physical Layer ( PHY ) Specifications [2] Draft-obara-capwap-lwapp-00.txt, IETF Light Weight Access Point Protocol

MIB content (30 objects)

Informations

Organization
Cisco Systems Inc.
Contact info
Cisco Systems, Customer Service Postal: 170 West Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS Email: cs-wnbu-snmp@cisco.com

Revisions

2007-04-19 00:00
Added cLReapGroupConfigTable and cLReapGroupApConfigTable.
2006-04-19 00:00
Initial version of this MIB module.